Chapter 9 Annunciation Systems

9-1. General

EPRI EL-5036, Volume 10, provides guidelines and considerations in planning and designing annunciation systems for power plants.

9-2. Audio and Visual Signals

Every power plant should be provided with an annunciation system providing both audible and visual signals in the event of trouble or abnormal conditions.

- a. Audio signals. Howler horns and intermittent gongs are used for audible signal devices. An intermittent gong is provided in the plant control room. Howler horns are used in the unit area and in areas where the background noise is high (e.g., in the turbine pit) or in areas remote from the unit (e.g., plant switchyard).
- b. Visual signals. Visual signals are provided by lighted lettered window panels of the annunciator. In larger plants, the annunciator panel indication is augmented by unit trouble lamps located in a readily visible position close to the unit. The plant sequence of events recorder (SER) is normally located in the control room. Separate annunciators (when provided) for station service systems and switchyards should be located on associated control panels of the station service switchgear or on the switchyard control panels.

9-3. Annunciator

a. General. The annunciator system should be designed for operation on the ungrounded 125-V DC system discussed in Chapter 11. All remote contacts used for trouble annunciation should be electrically independent of contacts used for other purposes so annunciator circuits are separated from other DC circuits. Auxiliary relays should be provided where electrically independent contacts cannot otherwise be obtained. The annunciator equipment should use solid-state logic units, lighted-window or LED type, designed and tested for surge withstanding capability in accordance with ANSI C37.90.1, and manufactured in accordance with ANSI/ISA S18.1.

b. The switchboard annunciator operational sequence should be a manual or automatic reset sequence as listed in Table 9-1.

Automatic reset should be employed when there is either an SER or a SCADA system backup. When the plant is controlled and dispatched through the SCADA system of the wheeling utility, the design reset features of the annunciator should be coordinated to ensure proper operation.

c. The generator switchboard is provided with annunciator alarm points for unit emergency shutdown, generator differential lockout, generator incomplete start, generator or 15-kV bus ground, generator overspeed, generator overcurrent, generator breaker low pressure, unit control power loss, generator CO₂ power off, PT fuse failure or undervoltage, and head cover high water.

Table 9-1
Switchboard Annunciator Operational Sequence

Field Contact	Control Pushbutton or Switch	Alarm Lights	Horn	Auxiliary or Repeater Contacts
Normal		Off	Off	Off
Abnormal		Flashing	On	On
Abnormal	Acknowledge or Silence	On	Off	On
Normal	Reset	Off	Off	Off
Normal	Test	On	Off	Off

EM 1110-2-3006 30 Jun 94

Certain alarm points have several trouble contacts in parallel by equipment group. Examples include generator excitation system trip or trouble, turbine bearing oil trouble, generator cooling water flow, unit bearing overheat, generator oil level, generator stator high temperature, and governor oil trouble.

- d. The generator switchboard may be provided with an additional annunciator for the generator step-up transformer and unit auxiliary equipment alarms, depending on the plant arrangement. Generally, these alarm points are transformer differential, transformer lockout trip, transformer overheat, transformer trouble, 480-V switchgear trip, and trouble.
- e. The generator excitation cubicle is provided with an annunciator for excitation equipment alarm points for AC regulator trip, bridge overtemperature, transformer over temperature, regulator power supply, field overvoltage, maximum excitation limit, minimum excitation limit, and volt per Hertz. Generator overvoltage, power system stabilizer, and fan failure alarm points should be included when required.
- f. The switchboard annunciator for large power plants should be provided with auxiliary or repeater contacts to drive control room console remote annunciator word-indicating lights.
- g. A control console window-indicating light annunciator is common to all units. One unit at a time can be selected by use of the appropriate unit trouble status lighted pushbutton. Visual indication is provided when the unit switchboard annunciator is activated. The console window indicating lights are generally grouped by switchboard annunciator points and provide essential trouble status to the operator. Unit troubles are normally categorized by shutdown, differential, overcurrent, cooling water, bearing oil, unit trouble, breaker air, CO₂ discharge, control power, and head cover high water. The

window indicating light annunciator provides backup for a sequential event recorder. Unit switchboard annunciator remote control switches to silence and reset the switchboard annunciator should be provided on the control console.

9-4. Sequence of Events Recorder (SER)

An SER should be provided to complement the plant annunciation system if a SCADA system is not performing the sequence of events function. The SER provides a time-tagged, sequenced, printed record of trouble events. The documented record of a trouble event aids in diagnosing power plant forced outages. It is designed for operation on an ungrounded 125-V DC system. All inputs should be optically isolated and filtered for 125-V DC dry contact change-of-state scanning. The SER minimum resolution should be coordinated with using agencies. A value of 2 msec is typical. When an input signal status change occurs, the SER should automatically initiate and produce a tabulated printed record on the data logger identifying the event and showing the time of status change (to the nearest millisecond). The SER should be provided with a system clock and time synchronization features. Each SER system should be provided with an adequate input point capacity to monitor each alarm trouble contact and provide plant breaker status necessary for the plant operation. The alarm trouble contacts should include IEEE 1010 requirements and project alarm points requirements.

9-5. Trouble Annunciator Points

All of the alarm points listed in Table 9-2 below are not required in every plant, and, conversely, requirements for an unlisted alarm point may arise. IEEE 1010 provides types of alarm signals transmitted to the generator annunciator from the generator, excitation system, generator terminal cabinet, generator breaker, step-up transformer, turbine, and governor, which are listed in Table 9-2.

Table 9-2 Alarm Signals Transmitted to the Generator Annunciator

	Generator Switchboard Annunciator Points
Signal	<u>Description</u>
86GX & 86GT 87GX 48TDC 64X 12G	Unit Emergency Shutdown Generator Differential Shutdown Generator Incomplete Start Generator or 15-kV Bus Ground Generator Overspeed
51GAR 63	Generator Overcurrent Generator Breaker Low Pressure

(Continued)

Table 9-2. (Continued)

Generator Switchboard Annunciator Points

<u>Signal</u> <u>Description</u>

74CB Control Power Loss
63X CO₂ Discharge
27CO₂ CO₂ Power Off

27G PT Fuse Fail or Undervoltage 71HC Head Cover High Water

Generator Regulator Trip or Trouble
Turbine Bearing Oil Trouble
Generator Cooling Water Flow
Unit Bearing Oil Trouble
Generator Oil Level

* Generator Stator High Temperature

Governor Oil Trouble

* See IEEE 1010

Step-Up Transformer Annunciation Points

<u>Signal</u> <u>Description</u>

87TAR Transformer Differential

86L Transformer Lockout Trip (Includes Transformer Ground)

74TL Transformer Control Power Loss

* Transformer Overheat
* Transformer Trouble
20TDX Transformer Deluge

* See IEEE 1010

Line Annunciation Points

<u>Signal</u> <u>Description</u>

94L1 Line Lockout

74 Line Relay or MW Power Off

74 Microwave Trouble

Station Service Transformer Annunciation Points

<u>Signal</u> <u>Description</u>

86T Transformer Lockout 63G,49,26Q,71Q Transformer Trouble

94 Transformer Breaker Tripped

63X CO₂ Discharge

Station Annunciation Points

<u>Signal</u> <u>Description</u>

86BD Station Service Switchgear Bus Differential BA Station Service Switchgear DC Trouble

Station Annunciation Points

Signal Description

63 Station Service Switchgear Breaker Low Pressure

94 Station Service Feeder Breaker Tripped

(Continued)

Table 9-2. (Concluded)

BA 480-V AC Feeder Breaker Tripped 64,BA Bus Tie Breaker Tripped or Trouble

74 Battery Charger Failure

BA 125-V DC Feeder Breaker Tripped 64,74,27 125-V DC System Tripped 64,74,27 48-V DC System Trouble BA 48-V DC Feeder Breaker Trip

74,83 Inverter Trouble

71 Unwatering Pump Trouble
71 Drainage Pump Trouble
71 Septic Tank High Level
71 Effluent High Level
63 Station Air Low Pressure

63 Oil or Paint Storage Room CO₂ Discharge

27 Fire Pump Power Off 42 Fire Pump On

74,71 Engine Generator Trouble
94 Engine Generator Trip
74 Plant Intrusion Detector

Switchyard Annunciation Points

<u>Signal</u> <u>Description</u>

Power Circuit Breaker Loss of Tripping and Closing Energy
Power Circuit Breaker Energy Storage System Energy

Breaker Close Bus Failure 27 Breaker Trip Bus Failure 27 86 Breaker Failure Lockout Relay 27 Relay Potential Failure 21 Line Distance Relay Trip Line Overcurrent Relay Trip 50/51L Line Ground Relay Trip 64L 94L Microwave Transfer Trip

74 MWTT Trouble

86BD Bus Failure Lockout Relay
74 Line Communication Trip
42 Transformer Cooling Fan Failure

49 Transformer Overheat

71G Transformer Gas Accumulator

71Q Transformer Oil Level

63Q Transformer Sudden Pressure Relay
51G Transformer Ground Detector
63G Transformer Inert Air Tank Pressure
86T Transformer Lockout Relay
87T Transformer Phase Differential
50/51T Transformer Phase Overcurrent

Switchyard Annunciation Points

<u>Signal</u> <u>Description</u>

50G Transformer Neutral Overcurrent

28 Transformer Fire
74 Battery Charger Trouble

27,64,74 Battery Trouble 74,83 Inverter Trouble

42 Engine Generator Running 71,74 Engine Generator Trouble 74 Yard Intrusion Detector